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Abstract. In order to obtain and maintain control, kernel malware usu-
ally makes persistent control flow modifications (i.e., installing hooks).
To avoid detection, malware developers have started to target function
pointers in kernel data structures, especially those dynamically allocated
from heaps and memory pools. Function pointer modification is stealthy
and the attack surface is large; thus, this type of attacks is appealing to
malware developers. In this paper, we first conduct a systematic study of
this problem, and show that the attack surface is vast, with over 18, 000
function pointers (most of them long-lived) existing within the Win-
dows kernel. Moreover, to demonstrate this threat is realistic for closed-
source operating systems, we implement two new attacks for Windows
by exploiting two function pointers individually. Then, we propose a
new proactive hook detection technique, and develop a prototype, called
HookScout. Our approach is binary-centric, and thus can generate hook
detection policy without access to the OS kernel source code. Our ap-
proach is also context-sensitive, and thus can deal with polymorphic data
structures. We evaluated HookScout with a set of rootkits which use ad-
vanced hooking techniques and show that it detects all of the stealth
techniques utilized (including our new attacks). Additionally, we show
that our approach is easily deployable, has wide coverage and minimal
performance overhead.
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2 H. Yin et al.

1 Introduction

As malware evolves to be increasingly sophisticated and stealthy the operating
system kernel has become a popular target for attacks [10]. Once the OS kernel
is compromised, attackers control every aspect of the victim’s system: they can
implement illicit functionality directly, hide malicious user-level components, and
make themselves and their components difficult to be detected and removed. To
achieve these malicious goals, malware tends to make persistent control flow
modifications, and in other words, hooks are installed in the victim’s system. A
previous study shows that the 24 out of 25 kernel rootkits in the survey make
persistent control flow modifications [16].

Old-fashioned malware installs hooks by either tampering with certain kernel
code regions or overwriting entries in well-known data regions. These well-known
data regions include SSDT (System Service Descriptor Table), IAT (Import Ad-
dress Table) and IDT (Interrupt Descriptor Table). Current hook detection tools,
such as VICE [3], System Virginity Verifier [23] and IceSword [12], verify the in-
tegrity of all code regions and known data regions, and thus have successfully
defeated these hooking techniques. To evade detection, malware has moved its
target to previously unknown and unexplored data regions. In particular, mal-
ware overwrites function pointers in kernel data structures, which usually reside
on heaps or in dynamically allocated memory pools. These kernel data struc-
tures maintain critical system states and configurations and contain important
function pointers [9]. The number of function pointers in the kernel space can be
large, and without in-depth knowledge of these kernel data structures, it is very
difficult to locate and validate them. Therefore, this new hooking technique is
ideal for attackers to install stealthy hooks.

To tackle this severe security problem, several systems have been proposed.
Systems such as HookFinder [32], K-Tracer [14], and PoKeR [20] take a post-
mortem approach. These systems analyze a new kernel rootkit to extract its
attack mechanism after the rootkit has caused damages and been caught. Then
the extracted hooking mechanisms can be used to update the hook detection
policy for guarding against similar attacks in the future. However, postmortem
analysis is not an effective defense because a large number of kernel objects and
function pointers exist in memory, and the number of potential locations for
placing this kind of hook is enormous. This means that even when a new attack
region is discovered and blocked, attackers can simply locate and exploit another
data structure to achieve the same objective.

Other systems like SBCFI [16], Gibraltar [1], HookSafe [31], and SFPD [4] take
a proactive approach. Instead of dissecting malware to figure out what regions
have been used for placing hooks, these systems examine the operating system
to understand where these function pointers are and how they are used, and
then generate a hook detection policy. This policy can be used to traverse kernel
data structures, locate function pointers in these kernel objects, and determines
if they point to legitimate targets. In order to know how to traverse kernel
data structures, these systems perform static source code analysis, extract type
graphs, and generate traversal templates. However, in many cases, we do not have



HookScout: Proactive Binary-Centric Hook Detection 3

access to the source code of the operating system, such as Microsoft Windows.
Therefore, the requirement of access to source code would impede third-party
security practitioners to deploy these systems. Moreover, since we do not have
source code of third-party device drivers and modules, hooks in these components
will also be overlooked by static source code analysis.

In this paper, we take a proactive approach. We first systematically study
the attack space and nature of this new hooking technique. We perform whole-
system dynamic binary analysis to monitor kernel memory objects and keep
track of function pointers propagating in the kernel space. By directly observing
how the operating system is operating at the binary code level, we conduct a
quantitative measurement study on this attack vector. To further demonstrate
that this new threat is realistic, we implement two keyloggers by exploiting two
different function pointers. Since these two attacks are new, they can successfully
evade all the existing hook detection tools. To effectively defeat this threat, we
propose a novel approach for proactive hook detection. We aim to derive the
hook detection policy directly from the knowledge about kernel memory objects
and function pointers. Compared to previous approaches, our approach is binary-
centric. That is, it performs analysis directly on binary code, without assuming
the access to source code. Therefore, this approach can be widely deployed on
the system with closed-source OS kernel and third-party components.

To demonstrate the efficacy of our approach, we built a prototype, called
HookScout. It consists of two subsystems: analysis subsystem and detection sub-
system. The analysis subsystem performs binary code analysis on the operating
system kernel and automatically generates a policy for hook detection. The de-
tection subsystem residing on the user’s machine enforces the generated policy
and detects hooks in the kernel space.

In summary, this paper makes the following contributions:
– To assess the attack space of function pointer hooking technique, we con-

duct a systematic measurement study. It shows that the space of this new
attack vector is enormous: there are around 18, 000 function pointers in the
Windows kernel space in total, the majority of these function pointers (90%)
are long-lived, and very few (3%) ever change in their lifetime.

– To further demonstrate the severity of this problem, we identify two func-
tion pointers in the keyboard driver, and implement two new keyloggers by
exploiting these two function pointers individually. These two new attacks
can successfully evade the existing hook detection tools.

– We propose a binary-centric approach for generating a hook detection policy.
– We design and implement a prototype called HookScout, to demonstrate the

effectiveness and efficiency of our approach.
– We evaluated HookScout with a popular closed-source operating system,

Windows XP with Service Pack 2. The analysis subsystem can generate the
hook detection policy within a few hours. The generated policy can achieve
very high coverage (over 95%). The detection subsystem was able to detect
all the rootkit samples in our sample set, including the two new synthetic
attacks. We also showed that the performance overhead of this detection
component is negligible.



4 H. Yin et al.

typedef struct {
int type;
char name[512];

} OBJ_HEAD;

typedef struct {
OBJ_HEAD head;
LIST_ENTRY link;
int (*open)(char *n, char *m);
...

} FILE_OBJ;

typedef struct {
OBJ_HEAD head;
LIST_ENTRY link;
int state;
int (*ioctl)(char *buf, int size);
...

} DEVICE_OBJ;

LIST_ENTRY ObjListHead;

CreateFile() {
FILE_OBJ *f = malloc(sizeof(FILE_OBJ));
...
InsertTailList(&f->link, &ObjListHead);
...

}

CreateDevice() {
DEVICE_OBJ *d = malloc(sizeof(DEVICE_OBJ));
...
InsertTailList(&d->link, &ObjListHead);
...

}

Fig. 1. Code snippet that illustrates a polymorphic linked list. The doubly-linked
list starting with ObjListHead contains objects of two different types, FILE OBJ and
DEVICE OBJ. This code snippet is a simplified example inspired by the Windows kernel
hash table for organizing kernel objects.

2 Problem Statement

In this paper, we take a proactive approach to detecting function pointer hooking
attacks. That is, we want to generate a hook detection policy that can be used
to thoroughly locate and validate the function pointers in the kernel space. To
facilitate deployment, we want to directly derive the hook detection policy from
the binary code of OS kernel and device drivers. As a result, our technique can
be widely used to protect closed-source operating systems like Windows and
proprietary device drivers.

Furthermore, we have to cope with type polymorphism. That is, the actual
type of a polymorphic data object is determined by the context under which this
data object is created. Figure 1 illustrates such a case. A linked list ObjListHead
stores objects of two different types, FILE OBJ and DEVICE OBJ. These two types
share a common head structure OBJ HEAD, while the remaining portions in these
two types are different. The function CreateFile creates a FILE OBJ object, and
the function CreateDevice creates a DEVICE OBJ object. If we are not aware of
the different creation contexts of these two types of objects, we will not notice this
type polymorphism, and thus will not locate and traverse the function pointers
in these objects. Indeed, in the Windows kernel, many different types of kernel
objects, such as files, devices, drivers, and processes, are managed in a centralized
hash table [24]. These kernel objects keep important system states and function
pointers. Thus, it becomes critical to traverse and verify the function pointers
in these polymorphic data structures.
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3 Approach Overview

At a high level, our approach consists of two subsystems: analysis subsystem and
detection subsystem. The analysis subsystem performs static and dynamic binary
analysis on a given distribution of an operating system, and generates a policy
for hook detection. The detection subsystem is deployed on users’ machines with
the same distribution of the operating system installed. The detection subsys-
tem enforces the policy generated by the analysis subsystem and actively detects
hooks at runtime. Note that the system protected by the detection subsystem
does not need to be the same as the one analyzed by the analysis subsystem.
These two systems only need to have the same set of binary modules (including
main kernel modules and common device drivers). For instance, if the analysis
subsystem generates a policy for Windows XP Professional SP2, then this policy
can be used for hook detection on any machines with Windows XP Professional
SP2 installed. Of course, when a new kernel update is released, we need to gen-
erate a corresponding policy for it. Since our system can generate the new policy
in a fully automatic manner within a few hours (as demonstrated in Sect.5.2),
we believe our approach is practical for wide deployment. In this section, we give
a description of the analysis subsystem and the detection subsystem.

3.1 Analysis Subsystem

We perform whole-system dynamic binary analysis on the operating system for
which we want to generate the hook detection policy. In other words, we run
the entire installation of an operating system along with common applications,
and observe how the OS kernel behaves. In particular, we are interested in the
kernel’s behaviors in two aspects: (1) because function pointers become the tar-
gets for installing hooks, we want to know how function pointers are created,
distributed, and used; and (2) we want to monitor memory objects that are allo-
cated either statically or dynamically. Then we can have a complete view of the
kernel memory space, in terms of where memory objects are and where function
pointers are located within these memory objects. Such a complete view en-
ables us to quantitatively and qualitatively assess the space and characteristics
of kernel hooking attacks, and helps us determine appropriate detection policies.

Furthermore, we want to generate the hook detection policy by inferring in-
variants from this complete view (or more precisely, a series of views). In partic-
ular, we need to determine the layout of each memory object, in terms of where
the function pointers are located within the memory object and what properties
these function pointers have (e.g. whether they change over time). This process
is essentially analogous to inferring the type of a memory object.

In order to address polymorphic data structures, we propose a context-sensitive
analysis technique for inferring the policy. We take into consideration the execu-
tion context where each memory object is created. We rely on the fact that mem-
ory objects created in the same execution context are of the same or compatible
types. That is, these memory objects should have the same or compatible layouts.
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For the example in Fig.1, all the memory objects created in CreateFileare of type
FILE OBJ, and all the objects allocated in CreateDevice are of type DEVICE OBJ.

By tracking function pointers and monitoring memory objects, we are able
to obtain the concrete layout for each memory object at a specific moment (i.e.
exactly where the function pointers exist in an object). In order to locate and
validate function pointers in the future, we need to extract a generalized layout
for all the memory objects that are created in the same execution context. To
this end, we devise a generalization process, which produces a generalized layout
for a given execution context by merging concrete layouts of multiple memory
objects created under that context. Such a generalized layout associated with
the execution context is a context-sensitive template in our policy. As a result,
the generated policy consists of a list of context-sensitive templates.

3.2 Detection Subsystem

To enforce the generated policy, the detection subsystem needs to be context-
sensitive as well. That is, the detection subsystem monitors the allocation and
deallocation of memory objects, extracts the execution context when each mem-
ory object is created, and looks up the policy template corresponding to this
execution context. Then according to the template associated with this memory
object, the detection subsystem will periodically verify the validity of function
pointers in this memory object. Continuing with the example given in Fig.1, we
would monitor memory objects created by CreateFile and CreateDevice. The
creation context will be used to look up policy. Therefore, the policy template
applied to the memory objects created by CreateFile will be different than the
one applied to those created by CreateDevice.

4 System Design and Implementation

To demonstrate the feasibility of our approach, we design and implement a sys-
tem, called HookScout. We illustrate the architecture of HookScout in Fig.2.
The analysis subsystem consists of two components: monitor engine and infer-
ence engine. The monitor engine watches the behaviors of the operating system
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Fig. 2. Architecture of HookScout
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of interest. More specifically, it monitors memory objects that are created either
statically or dynamically, and keeps track of function pointer propagating in the
kernel memory space. To perform this fine-grained dynamic binary analysis, we
build the monitor engine on top of TEMU [33,28]. TEMU is a dynamic binary
analysis platform based on an open-source whole-system emulator, QEMU [2].
During the dynamic analysis, the emulated operating system is exercised with
common test cases, and the monitor engine periodically records system snap-
shots, including the state of memory objects and function pointers. Taking the
snapshots as inputs, the inference engine performs context-sensitive analysis and
generates the policy for hook detection. In the detection subsystem, the detec-
tion engine, located in the system to be protected, enforces the policy generated
by the analysis subsystem and detects hook in the kernel space at runtime.

4.1 Analysis Subsystem

Monitor Engine. The monitor engine is responsible for: (1) monitoring mem-
ory objects; (2) tracking function pointers; and (3) periodically generating snap-
shots of the OS kernel.

Monitoring Memory Objects. The monitor engine watches memory objects that
are allocated either statically or dynamically. A static memory object is a mem-
ory region statically allocated for a kernel module for storing global variables,
while a dynamic memory object is allocated dynamically from heaps and memory
pools. To monitor kernel memory objects, we need to have basic knowledge about
kernel memory management. For Windows, we know that MmLoadSystemImage
is used to load a kernel module. RtlAllocateHeap and RtlFreeHeap are used
for heap allocation and deallocation. Additionally, ExAllocatePoolWithTag and
ExFreePoolWithTag are the root APIs for allocating and freeing memory pools.
We intercept these kernel functions. When a memory object is newly allocated,
we extract its base address and size and keep this information in the memory ob-
ject state. We maintain the information for static and dynamic memory objects
in an active memory object list. When a memory object is freed, we simply re-
move its information from the active memory object list. Some memory objects
are special and are statically allocated and pointed by system registers. For ex-
ample, IDTR is a register pointing to a static memory region for storing interrupt
descriptor table and FS is a segment register pointing to a static memory region
for storing the current execution context in Windows. Since these special static
memory regions may contain function pointers, we also monitor these objects.

For dynamically allocated memory objects, we also need to obtain the execu-
tion contexts when they are created. The execution contexts are later used by the
inference engine to perform context-sensitive analysis and generate policy. We
will describe how to obtain the creation context while discussing the inference
engine.

Tracking Function Pointers. The monitor engine identifies where each function
pointer is initialized and then keeps track of the function pointer as it propagates
throughout the system.
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To identify the initial function pointers, we leverage the following fact: in
Windows (or other relocatable OS kernels), all the modules (including the kernel
itself) are generated to be relocatable. All references with absolute addresses to
the statically allocated code and data sections for each kernel module have to
be placed in the relocation table (e.g., .reloc for PE format). In this way, if
the executable loader decides to load a kernel module into a different memory
region than assumed, it can go through this relocation table to update these
references. Due to the fact that a function pointer refers to the absolute address
of a function within a relocatable module, it must appear in the relocation table.
Then to determine initial assignments of function pointers, we can check for
each entry in the relocation table whether it points to a function entry. Function
entries can be determined through standard static binary analysis.

0005ed61: mov [ebp-50h], 00015141h

For example, the instruction shown above moves a constant number into a
memory location. This constant’s location (0005ed64h1) appears in the reloca-
tion table and the actual value (00015141h) of this constant points to the entry
point of a function. Then we can determine that this instruction copies a function
pointer into a memory location on the stack.

Moreover, an instruction may also reference a function from another module
as a function pointer. In this case, this function appears in the import address
table (i.e., IAT).

000146ae: mov eax, ds:[00013464h] ; READ_PORT_UCHAR
000146b3: mov [0001390ch], eax

For example, the two instructions above moves a function
READ PORT UCHAR defined in IAT to a global variable located at
0001390ch. Therefore, we need to check IAT for initial function pointers as well.

We developed a plugin to IDA Pro [13] to perform this static analysis. This
plugin takes a kernel module as input, automatically enumerates the entries in
the relocation table and import address table, identifies the function boundaries,
and determines the locations of initial function pointers. By performing this
analysis on all kernel modules (including device drivers), we have identified all
the initial function pointers in the kernel.

Then, to keep track of function pointers propagating over the system, we
perform whole-system dynamic taint analysis, as many previous systems do [7,
34,32,5,6]. That is, we mark the initial function pointers as tainted, and during
the execution of each instruction, if any source operand is tainted, we mark the
destination operand is tainted by checking data dependency between operands.
In this way, we can track which data structures and locations these function
pointers are copied into. In the implementation, we make use of the taint analysis
functionality in TEMU.

1 The instruction starts at 0005ed61h. The first three bytes are used for opcode and
the first operand. So this immediate operand is located at 0005ed64h.
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Therefore, relying on the relocatable property of initial function pointers and
dynamic taint analysis, we can identify the vast majority of function pointers (if
not all) in the kernel memory space. For the OS kernels that are not relocatable
(e.g., Linux), we cannot use this technique. Alternatively, we can examine the
concrete value for each memory word within a memory object to see if it points
to a kernel function entry.

Inference Engine. The inference engine takes the system snapshots as input,
performs context-sensitive analysis, and infers a policy for hook detection.

Determining Execution Context. In general, we want to know who creates a
memory object. From the binary code point of view, this information can be
obtained from the call stack when the memory allocation routine is invoked. From
the call stack, we obtain the return address of the memory allocation function
call. Considering that the function that invokes the memory allocation routine
is called by another function, we actually obtain a chain of return addresses.
Therefore, we define the execution context to be a chain of return addresses
and the size to be allocated. Taking into account that kernel modules can be
relocated to different locations in different executions and different systems, for
each return address, instead of the absolute address, we keep the relative address
— the offset to the base of the module where this return address is located.

Note that the number of return addresses to be included determines the level of
context sensitivity in our analysis. The more return addresses, the more context-
sensitive our analysis is. For example, if function A and function B call function
C, and function C allocates memory objects for A and B, the analysis with only
one return address will think memory objects created in C are of the same type,
which may not be true. In comparison, the analysis with two return addresses
will treat memory allocated for function A and B differently. Hence, the increase
of context sensitivity results in better analysis precision. However, the increase of
context sensitivity also leads to more complexity in our analysis. First, it means
that we need to perform more thorough test cases to cover more execution con-
texts. Second, it means the number of templates in the policy would increase
drastically. Therefore, we need to determine an appropriate level of context sen-
sitivity. Fortunately, as shown in Sect.5.2, analysis with very small number (1 to
3) of return addresses can already generate high-quality policies with very high
coverage.

Inferring Policy Templates. We merge the layouts of multiple dynamic memory
objects with the same execution context into a generalized layout. Static memory
objects are different because they are not associated with execution contexts so
we uniquely identify them by their names (e.g., module names or register names).
Thus, for static memory objects, we merge them according to their names.

Within a memory object, we classify each field (e.g., 4-byte memory in 32-
bit architecture) into one of the following types: NULL, FP, CFP, and DATA.
NULL is for a field that holds a concrete value 0. FP identifies a function pointer,
which we determine by checking if this field is tainted. CFP indicates a constant
function pointer that has never changed its value in its lifetime. To determine a
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DATA
|

FP
|

CFP
|

NULL

(a)

� NULL CFP FP DATA

NULL NULL CFP FP DATA
CFP CFP CFP FP DATA

FP FP FP FP DATA
DATA DATA DATA DATA DATA

(b) (c)

Fig. 3. Join operator � used in merging object layouts, shown using a lattice (a), an
operation table (b), and an example (c)

CFP, we check if this field is tainted in the current snapshot, and its concrete
value remains unchanged in previous snapshots since this field is initialized.
Thus, CFP is a subset of FP. DATA specifies a field that holds a data value,
which is not tainted and does not hold a concrete value 0.

To merge a set of observed object layouts into a single generalized layout, we
conservatively infer the most general type for each field, according to the ordering
shown in Fig.3 (a). In the order NULL, CFP, FP, and Data, each type covers
more possibilities than the earlier ones, so we generalize to the most specific
type that includes all observations. This generalization corresponds to the join
operator � in a simple linearly-ordered lattice. A corresponding matrix for this
join operation � is also shown in Fig.3 (b). For instance, if one type is DATA
and the other is a function-pointer type FP or CFP, the field might contain
either a function pointer or data. To be conservative, we mark it as DATA in the
generalized layout. Similarly, if a function-pointer field was sometimes constant
and sometimes not constant, it is conservatively non-constant in the merged
layout: CFP � FP = FP. We illustrate a concrete example how two memory
objects are merged in Fig.3 (c).

As we will show in Sect.5.1, the vast majority of function pointers are con-
stant. In other words, they never change during their whole lifetime. Thus, the
generalized layouts can be directly used as a policy to detect hooks that make
modifications on these constant function pointers. In the current implementation
of HookScout, we employ this simple policy. This policy does not protect non-
constant function pointers. We leave it as our future work to investigate more
sophisticated policies for protecting non-constant function pointers. Note that
so far the generated policy is a raw policy, including all templates. For the final
policy to be enforced on users’ machines, we only need to include the templates
that contain CFP fields, which is only a small portion of all templates, as shown
in Sect.5.2.

4.2 Detection Subsystem

The detection engine resides on a user’s machine to detect violations of the hook
detection policy generated by our analysis subsystem. We are aware that the
detection engine can be implemented in at least two ways. First, it can be im-
plemented as a kernel module inside the protected operating system. Second,
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it can be implemented inside a virtual machine monitor to detect attacks hap-
pening in a virtual machine. While the first approach is easy to implement and
deploy, the second approach is more resilient to various attacks. In the current
implementation of HookScout, we implement a proof-of-concept detection engine
as a kernel module, mainly for demonstrating the effectiveness of our approach.
We realize that malware is able to subvert our detection component, like any
other security products sitting in the same execution environment as malware.
We leave a more secure implementation as future work.

In the kernel module, we intercept the same set of kernel functions for moni-
toring memory objects, as those in the monitor engine. When a memory object
is created, we extract its execution context and determine if there is a policy
template associated with this execution context. If not, we skip this memory
object. For those memory objects that are associated with policy templates, we
periodically check if the constant function pointers within them hold different
values than before. A different value indicates a hooking attack. When a memory
object is freed, we remove it from the active object list.

As the kernel functions to be intercepted are not in the SSDT, SSDT hooking
is not an option to hook these functions. Instead, we hot patch the entry of each
of these functions. That is, we place a jmp instruction into the function entry,
making the execution redirected into the detection engine. The kernel module is
configured to be loaded at the earliest stage of boot time, in order to monitor
the memory objects as early as possible.

Note that this periodical checking approach may still leave room for transient
attacks on function pointers, depending on the frequency of checking. A more
secure approach is to enforce our detection policy with HookSafe [31], where a
shadow memory is maintained for protected function pointers and unauthorized
changes can be detected instantly.

5 Evaluation

In the experiments, we aim to evaluate our system in the following aspects.
In Sect.5.1, we quantitatively assess the attack space and characteristics of
kernel-space hooking attacks. In Sect.5.2, we evaluate the analysis subsystem
of HookScout, with respect to the coverage rate of the generated policy, the
influence of context sensitivity to the quality of the generated policy, and perfor-
mance overhead. In Sect.5.3, we evaluate the detection subsystem of HookScout,
in terms of detecting real-world kernel rootkits, false alarms, and performance
overhead.

Experiment Setup. Our experiments proceeded as follows. We first ran the analy-
sis subsystem of HookScout to monitor and analyze a given operating system. To
demonstrate that HookScout can work with closed-source operating systems, we
chose Windows XP Professional Edition with Service Pack 2, a popular platform
targeted by the majority of malware samples. During the analysis, we exercised
the monitored operating system with a series of test cases that activate various
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OS subsystems, including filesystem, networking, process and thread manage-
ment, and so on.

It took approximately 25 minutes to boot up the Windows XP with our mon-
itor engine and execute the test cases. Meanwhile, the monitor engine recorded
system snapshots every 15 seconds. The snapshot contains the states of memory
objects and function pointers. Therefore, 100 snapshots were recorded for each
run. In total, we performed 3 different runs, which rendered a total of 300 snap-
shots. Then on these snapshots, we assessed the attack space and characteristics,
and generated policy for hook detection.

We ran the analysis subsystem of HookScout on a Linux machine with a dual-
core 3.0GHz CPU and 4GB RAM. We ran a Windows XP Professional SP2 disk
image inside QEMU with 512MB allocated memory. We installed the detection
subsystem on a machine with a 3.0GHz CPU and 4GB RAM and Windows XP
Professional SP2.

5.1 Attack Space and Characteristics

By monitoring system execution and tracking function pointers in the kernel,
we are able to assess the attack surface and characteristics of potential kernel
hooking attacks.

First of all, we want to know how many function pointers exist in kernel space
during the execution. This indicates the space of this attack vector. To explore
this question, we picked the first run, and for each snapshot in that run, we
counted the total number of function pointers in that snapshot2. Figure 4 shows
the total number of function pointers over the 25-minute execution. We can see
that the total number of function pointers climbs up in the first 5 minutes of
system boot-up, and then fluctuates around 18, 000 during the execution of test
cases. If every function pointer could be potentially exploited, the space of kernel
hooking attacks is enormous. Figure 4 also shows the number of function pointers
in dynamically allocated memory objects. Because these function pointers cannot
be easily located and verified by traditional rootkit detection methods, they are
more attractive to attackers. We can see that the number of function pointers in
dynamically allocated memory objects is fairly high, around 8, 000. Therefore,
there is a large attack surface for attackers to utilize in the OS kernel.

Then, we want to know how long these function pointers live in the kernel space.
Since we aim to detect persistent control flow modifications, attacks would target
at long-lived function pointers instead of transient ones. Therefore, we want to
know how many function pointers are long-lived. We used the last snapshot in the
first run as a starting point, and looked backward at each of previous snapshots. If
we see a function pointer exists in one snapshot but not in the snapshot before it,
we treat this snapshot as the birth time of this function pointer. Figure 5 shows
the cumulative distribution function (CDF) of the function pointers’ lifetime in
the last snapshot of the first run. We can see that around 10% function pointers
only lived less than two minutes, and approximately 90% function pointers lived
longer than 17 minutes, and very few lived in between.
2 Note that all runs had similar characteristics.
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Moreover, we want to know how frequently these function pointers change
their targets during the execution. To answer this question, we examined all
these snapshots, and for each of function pointers in these snapshots, checked if
its concrete value was different in any of previous snapshots during its lifetime.
We observe that up to 3.63% function pointers have ever changed during their
lifetime. This observation indicates that a simply policy would suffice to validate
the vast majority of function pointers.

Two Synthetic Keyloggers. To further assess the severity and practicality of func-
tion pointer hooking attack, we play on the attacker’s side. We implemented
keystroke sniffing functionality by tampering with function pointers. We per-
formed a combination of dynamic and static binary analyses to reverse engi-
neer a small part of kernel code related to keystroke processing. We sent some
keystrokes into the emulated system and collected an execution trace for the
guest kernel. Through dynamic taint analysis, we tracked how keystrokes propa-
gate in the kernel space. In consequence, we identified several code regions that
are relevant to keystroke processing. Then we statically examined these code
regions using IDA Pro. It took one of the authors only a few hours to identify
two function pointers (one in static memory region allocated in the keyboard
driver i8042prt.sys, and the other in a dynamic memory region) that can be
individually exploited to intercept keystrokes. To confirm that these two func-
tion pointers can be exploited indeed, we implemented two keyloggers, named
keylogger-1 and keylogger-2, to exploit these two function pointer respec-
tively. We are not aware that such attacks have appeared in the literature and
existing malware attacks. As shown in Sect.5.3, these two keyloggers evade the
existing detection tools except HookScout. This experiment demonstrates that
it is absolutely feasible for attackers to implement illicit functionalities by using
this stealthy attack technique.

5.2 Policy Generation

Now we evaluate the analysis subsystem of HookScout. In particular, we are
interested in how context sensitivity affects the coverage of the generated policy.
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Table 1. The coverage and size of policy influenced by the level of context sensitivity

Level Coverage Templates
AVG STDEV Raw Final

1 94.67% 2.97% 3518 308
2 96.10% 1.92% 4285 405
3 96.74% 1.64% 5270 511

The coverage is measured as a ratio of the number of function pointers identified
by the policy to the total number of function pointers. In addition, we want to
see how context sensitivity affects the size of the generated policy. To measure
the coverage, we used the snapshots from the first two runs to generate policy,
and then applied the generated policy to the snapshots from the third run.

We listed the experimental results in Table 1. We measured the coverage for
each snapshot in the third run. In Table 1, we summarized these results by
calculating the average and standard deviation of the coverage. For the size of
the generated policy, we listed the number of templates in the raw policy and
the number of templates in the final policy respectively. We make the following
observations: (1) the generated policies can achieve very high coverage, even
with 1 level of context sensitivity; (2) with an increase of context sensitivity,
coverage is increased accordingly; and (3) the size of policy (i.e. the number
of templates) is increased considerably with the increase of context sensitivity,
but the absolute number is still fairly small. Considering that 3-level context
sensitivity can achieve the highest coverage and reasonably small policy size, we
chose to generate a policy with 3-level context sensitivity.

It took approximately 70 seconds to process one snapshot, and around 4 hours
in total to generate a policy from 200 snapshots. Due to the fact that we only need
to generate one policy for each version of OS kernel and can distribute it to all
machines with the same OS kernel installed, we believe that this execution time
is acceptable. Moreover, the task of policy generation can be easily partitioned
and parallelized, which would increase the performance significantly.

5.3 Hook Detection

We evaluated three aspects of the detection subsystem of HookScout. First,
we compiled a set of kernel rootkit samples to evaluate the effectiveness of the
detection subsystem. Second, we measured its performance overhead. Third, we
evaluated the occurrence of false alarms.

Detecting Kernel Hooks. We obtained a set of kernel rootkits from public re-
sources [21, 17] and collaborative researchers. We selected the rootkit samples
that are known to install kernel hooks and are able to run in our test envi-
ronment. We also included the two synthetic keyloggers in the experiment to
evaluate how effective the existing detection tools and HookScout are in terms
of detecting new attacks. As a comparison with HookScout, we chose the fol-
lowing hook detection tools: IceSword [12], VICE [3], and RAIDE [19]. System
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Table 2. Detection Results of Four Tools. I stands for IceSword [12]), V for
VICE [3], R for RAIDE [19], and H for HookScout.

Sample Name Hooking Region I V R H

HideProcessHookMDL [21] SSDT � � � �
Sony Rootkit [26] SSDT � � � �
Storm Worm [27] SSDT � � � �
Shadow Walker [21] IDT ? � � �
basic interrupt 3 [21] IDT ? � � �
TCPIRPHOOK [21] Tcp driver object × � � �
Rustock.C [22] Fastfat driver object × × � �
Uay Backdoor [29] NDIS data block × × � �
Keylogger-1 Kbd static data region × × × �
Keylogger-2 Kbd dynamic data region × × × �

Virginity Verifier [23] did not function correctly in our testing environment, so
we did not include this tool in the experiment.

We listed the detection results in Table 2. We can see that all detection tools,
including HookScout, are able to detect SSDT hooks, and all except IceSword
are able to detect IDT hooks. IceSword displays only the content of IDT and re-
quires manual inspection to determine if there is a hook, so we leave a “?” mark
for IceSword. TCPIRPHOOK [21] and Rustock.C [22] hook function pointers in
Tcp and Fastfat device driver objects respectively. IceSword does not inspect
kernel objects, and thus cannot detect these hooks. While RAIDE checks both
Tcp and Fastfat, VICE only checks Fastfat object. Uay Backdoor [29] mod-
ifies function pointers in the NDIS data structure maintained for the TCP/IP
network protocol. IceSword and VICE cannot detect these hooks installed by
Uay Backdoor. However, RAIDE has another special policy for checking the
registered network protocol list, and thus can detect these hooks successfully.
By exploiting new function pointers, our two synthetic keyloggers, keylogger-
1 and keylogger-2, can evade all the detection tools in our experiment, except
HookScout.

As compared to the other three detection tools, HookScout is able to detect all
the samples in this set. The key difference between HookScout and the other tools
is that HookScout is equipped with much more thorough detection policy, which
is automatically generated by the analysis subsystem, whereas the other tools
have very limited policies that are manually defined. Given the high coverage of
our automatically generated policy, HookScout is substantially more difficult to
evade.

It is worth noting that TCPIRPHOOK, and Rustock.C tamper with function
pointers in kernel objects organized in the polymorphic hash table [24]. Even
with access to the source code of Windows kernel, context-insensitive analy-
sis approaches (such as SBCFI [16] and Gibraltar [1]) would not identify these
function pointers. By contrast, with context-sensitive policy inference and hook
detection, HookScout can automatically generate policy and validate these func-
tion pointers successfully. Moreover, Keylogger-1 exploits a function pointer in
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Table 3. Performance Overhead of the Detection Engine

Workload w/o w/ HookScout Slowdown
HookScout 1s 5s 1s 5s

Boot OS 19.43 s 20.70s 20.43 s 6.5% 5.1%
Copy directories 7.57 s 8.09s 7.68 s 6.9% 1.5%
(De)compress files 23.84 s 24.44s 23.51 s 2.5% -1.4%
Download a file 23.59 s 24.49s 24.42 s 3.8% 3.5%

the keyboard device driver. Without source code of this driver, source code
analysis approaches [16,1,31,4] will be completely unaware of function pointers
defined in this driver.

Performance Overhead. To observe how HookScout affects performance, we per-
formed several workloads and measured their execution times with and without
the detection engine installed. We also measured the performance with two differ-
ent checking intervals: 1 and 5 seconds. The workloads include booting Windows,
copying a directory structure, performing compression and decompression of a
directory structure with 7zip, and downloading a file with wget. The total size
of the directory structure is 75MB. The size of the downloaded file is 100MB.
Table 3 shows the execution time for each workload. Each workload is performed
7 times and the average of 5 non-minimum/maximum runs is reported. In all,
the slowdown caused by HookScout is about 4.9% and 2.1% for the checking
intervals of 1 second and 5 seconds respectively.

False Alarms. To evaluate the occurrence of false alarms, we installed HookScout
detection engine on a healthy system (without rootkits installed), and kept it
running for eight hours. Meanwhile, a user operated on this machine for his
regular computing tasks. We did not observe any false alarms during this period.

6 Discussion

In this section, we discuss the feasibility of potential evasion techniques against
HookScout and our countermeasures.

Exploit Uncovered Function Pointers. Attackers can perform the same analysis
on function pointers, and determine which function pointers would not be located
and verified by HookScout. Then they can target these function pointers to evade
HookScout. First of all, our policy generation technique can achieve over 95%
coverage, so we have substantially reduced the space of this attack (e.g., from
18,000 to 900). In addition, it may be impractical for attackers to take advantage
of many of these uncovered function pointers, because of their mutable nature:
sometimes they are function pointers and sometimes not. Furthermore, for this
small number of uncovered function pointers, defenders can investigate these
cases first and manually define special policies for the plausible attacks.
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Exploit Uncommon Proprietary Device Drivers. QEMU has emulated a set of
common hardware devices. For these common devices, HookScout can generate
policy to validate functions pointers in the corresponding device drivers. For
those devices that are not supported by QEMU, HookScout cannot generate
policy to protect their drivers, since these drivers are not installed and activated
during the analysis phase. This limitation is not specific to HookScout. No previ-
ous solutions are able to address this issue, which requires further investigation.

Attack Limited Test Cases. Our hook detection policy is derived mainly using
dynamic analysis. In principle, the quality of dynamic analysis is largely de-
termined by the completeness of test cases. Attackers could potentially exploit
those function pointers that were not initialized and moved around during our
analysis but will be activated in other test cases. Then HookScout would not
detect these attacks. By exercising the analysis subsystem with a more complete
set of test cases that exercises more kernel functionalities, this problem can be
alleviated. Moreover, if attackers only target the function pointers that are only
initialized and moved around in uncommon situations, it means the attacks will
not become effective most of time.

Subvert or mislead HookScout. The detection engine of HookScout is imple-
mented as a kernel module installed in user’s system, and thus is subject to
complete subversion just like any other security tools running in the same privi-
lege as malware. In addition, malware may mislead HookScout by injecting fake
events or changing the existing events that HookScout monitors. In particular,
HookScout relies on proper functionality of kernel memory management rou-
tines and correct call stack information to monitor memory objects. More secure
implementation based on virtual machine techniques can significantly raise the
defense bar against this kind of attacks. For example, Payne et al. systemati-
cally discussed the challenges of secure active monitoring, proposed a series of
solutions and built a framework called Lares [18].

7 Related Work

Postmortem Analysis. Several systems have been proposed to facilitate under-
standing of rootkit’s behaviors. HookFinder [32] can automatically identify and
understand how a rootkit installs hooks. K-Tracer [14] and PoKeR [20] are pro-
filing tools for monitoring rootkit behaviors in general, including hooking be-
haviors, data structure manipulation and others. The better understanding of a
new kernel attack can then be used to harden the security policy against similar
attacks. As our study shows, the attack space for kernel function pointer hooking
is vast. After a function pointer is known to be exploited, attackers may easily
switch to exploit another function pointer.

Proactive Defense. The first line of defense against kernel attacks is to prevent
untrusted code execution in the kernel space. Several systems leveraged the vir-
tual machine based architecture to monitor and enforce the kernel code integrity.
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Livewire [8] was the first proposal to make use of virtual machine monitor to
monitor system integrity, including verifying the kernel code regions and exam-
ining specific data attacks by querying the system states. SecVisor [25], is a tiny
hypervisor (i.e. virtual machine monitor) that ensures code integrity for com-
modity OS kernels. Patagonix [15], is another system based on hypervisor to
identify covertly executed binaries. This line of defense can be circumvented by
return-oriented rootkits [11], which take advantages of existing kernel code to
build illicit functionalities.

The second line of defense is to enforce control flow integrity. SBCFI [16],
Gibraltar [1], SFPD [4], HookMap [30], HookSafe [31], and HookScout belong
to this category. These system may still catch return-oriented rootkits, as long
as persistent control flow modifications are made. SBCFI [16], Gibraltar [1],
and SFPD [4] perform source code analysis on the OS kernel to derive the se-
curity policy. The requirement of source code would impede their deployment
on closed-source operating systems and proprietary device drivers. SBCFI and
Gibraltar need manual annotations for generic pointers and perform context-
insensitive analysis. Therefore, these two systems cannot deal with type polymor-
phism. SFPD addressed these two limitations by performing more comprehensive
inter-procedural context-sensitive points-to analysis. In comparison, HookScout
performs context-sensitive dynamic binary analysis. In consequence, it is able
to eliminate the requirement for source code and handle type polymorphism.
HookMap [30] analyzes the kernel-side execution of certain security applications
to help identify potential hook sites. Compared to HookMap, HookScout per-
forms more complete analysis by monitoring the full kernel execution and thor-
oughly tracking function pointers. Moreover, HookScout conducts more advanced
context-sensitive type inference, so it can deal with function pointers in complex
data structures and achieve significantly higher coverage than HookMap.

8 Conclusion

In this paper we targeted a class of advanced kernel attacks: function pointer hook-
ing. We assessed the severity of this new threat. First, we conducted a quantitative
measurement study to show the attack surface is vast. Second, we implemented
two new keyloggers using this attack technique, showing that this threat is realis-
tic even on closed-source operating systems like Windows. To effectively combat
this threat, we presented HookScout, a proactive, context-sensitive hook detection
scheme capable of detecting this stealthiest persistent control flow modifications
within the Windows kernel without the need for source code. We demonstrated
HookScout’s ability to generate a context-sensitive policy for detecting persistent
control modifications that can be used on any machine with the same version of the
OS kernel installed. We evaluated our system against real world stealthy rootkits
and malware and showed that we were able to detect all of them (including our
synthesized keyloggers). Additionally, we showed that our approach is easily de-
ployable, has a low overheard and most importantly, our approach is generic and
capable of detecting kernel-wide function pointer changes.
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